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Introduction

What exactly do we mean with non parametric??

• First of all, everything we have done in the last class, concerned to the analysis of
parametric relationships between 𝑦 and 𝑋′𝑠 .

• Why parametric? Because we assume that the relationship between those variables is
linear, so we just need to estimate the parameters of that relationship. (𝛽′𝑠). Even tho
the CEF was on itself non-parametric.

• This was just a matter of convince. Instead of trying to estimate all possible condi-
tional means (impossible task?) we impose functional form conditions, to identify the
relationship of interest.

• When we covered MLE (last semester) we even imposed functional forms assumptions
on relationships and distribution!

So what about non-parametric?

• Non-parametric is on the other side of the spectrum. There are no “single” parameters
to estimate, but rather it tries to be as flexible as possible, to identify all possible
relationships in the data.

• In terms of distributions, it may no longer assumes data distributes as normal, poisson,
exponential, etc. Instead, it simply assumes it distributes, however it does. � But isnt
that a problem?

• Yes it can be.
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– On the one hand Parametric modeling is very “strict” regarding functional forms.
(linear quadratic, logs, etc).

– On the other, Non-parametric can be too flexible. Making the problem almost
impossible to solve.

• However, the benefits of letting your data “speak” for itself, would allow you to avoid
some problems with parametric models.

Ok but what about Semi-parametric!

• Semi-parametric models try to establish a mid point between parametric and non-
parametric models, attempting to draw from the benefit of both.

– It also helps that it has a smaller computational burden (we will see what do I mean
with this).

• What about an example? Say we are trying to explain “wages” as a function of age and
education. (assume exogeneity)

Theoretical framework :𝑤𝑎𝑔𝑒 = 𝑔(𝑎𝑔𝑒, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝜀)

Parametric model: 𝑤𝑎𝑔𝑒 = 𝑏0 + 𝑏1𝑎𝑔𝑒 + 𝑏2𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜀

Non-parametric model: 𝑤𝑎𝑔𝑒 = 𝑔(𝑎𝑔𝑒, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) + 𝜀

Semi-parametric model: 𝑤𝑎𝑔𝑒 = 𝑏0 + 𝑔1(𝑎𝑔𝑒) + 𝑔2(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) + 𝜀
𝑤𝑎𝑔𝑒 = 𝑔0(𝑎𝑔𝑒) + 𝑏1𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜀
𝑤𝑎𝑔𝑒 = 𝑔0(𝑎𝑔𝑒) + 𝑔1(𝑎𝑔𝑒)𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜀
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Preliminaries

Step1: Estimation of Density functions

• The first step towards learning non-parmetric analysis, is learning to use the most basic
task of all.

• Estimating distributions (PDFs) : why? in economics, and other social sciences, we
care about distributions!

Distribution of income, how many live under poverty, how much is concentrated among
the rich, how skew the distribution is, what is the level of inequality, etc, etc

• The parametric approach to estimating distribution, is by using some predefined func-
tional form (say normal), and use the data to estimate the parameters that define that
distribution:

̂𝑓(𝑥) = 1√
2𝜋�̂�2 𝑒𝑥𝑝 (−1

2 (𝑥 − ̂𝜇
�̂� )

2
)

• Which can be done rather easy in Stata

frause oaxaca, clear
drop if lnwage==.
sum lnwage
gen f = normalden(lnwage, r(mean), r(sd))
histogram wages
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But as you can see, it does not fit well.

Histogram

Histograms are a type of non-parametric estimator that imposes no functional form restrictions
to estimate probability density functions (PDFs).

Construction histograms, is in fact, a fairly Straight forward task:

1. You select the width of bins, ℎ , and starting value 𝑥0

if 𝑥𝑖 ∈ [𝑥0 + 𝑚 ∗ ℎ, 𝑥0 + (𝑚 + 1)ℎ) → 𝑏𝑖𝑛(𝑥𝑖) = 𝑚 + 1

2. And the Histogram estimator for density, is given by:

̂𝑓(𝑥) = 1
𝑛ℎ ∑

𝑖
1(𝑏𝑖𝑛(𝑥) = 𝑏𝑖𝑛(𝑥𝑖))

Simple yet powerful, but sensitive to “h”
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Histograms with Varying h

Kernel density

An alternative to Histograms is known as the kernel density estimator.

̂𝑓(𝑥) = 1
𝑛ℎ ∑

𝑖
𝐾 (𝑋𝑖 − 𝑥

ℎ )

where 𝐾 is what is known as a kernel function.

Kernel function

A Kernel function is such that has the following properties:
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∫ 𝐾(𝑧)𝑑𝑧 = 1; ∫ 𝑧𝐾(𝑧)𝑑𝑧 = 0; ∫ 𝑧2𝐾(𝑧)𝑑𝑧 < ∞

Is a well behaved pdf on its own, that is symmetric, with defined second moment.

as with the histogram estimator, the Kden is just an average of functions, that has
the advantage of being smooth.

Although it also depends strongly, on the choice of bandwidth.

Kernel density: Visualization

Code in Stata

histogram var [if] [weight]

6



kdensity var [if] [weight]

frause oaxaca, clear
keep if lnwage!=.
mata:

y = st_data(.,"lnwage")
fden = J(rows(y),1,0)
for(i=1; i<=rows(y); i++) {

fden[i] =mean(normalden(y, y[i], 0.08))
}
tg = fden,y

end
getmata tg* = tg

<IPython.core.display.HTML object>

(Excerpt from the Swiss Labor Market Survey 1998)
(213 observations deleted)

. mata:
------------------------------------------------- mata (type end to exit) -----
: y = st_data(.,"lnwage")

: fden = J(rows(y),1,0)

: for(i=1; i<=rows(y); i++) {
> fden[i] =mean(normalden(y, y[i], 0.08))
> }

: tg = fden,y

: end
-------------------------------------------------------------------------------

.

scatter tg1 tg2, name(mx, replace)
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Trade off: Bias vs variance

While these estimators are “flexible”, there is one parameter that needs attention: The band-
width ℎ
This parameter needs to be calibrated to balance two problems in Non-parametric analysis.
Bias vs Variance:

1. when ℎ → 0 , the bias of your estimator goes to zero ( in average). Intuitively ̂𝑓(𝑥) is
constructed based on information that comes from 𝑥 alone.

But the variance increases! Because things will vary for every 𝑥.

2. when ℎ → ∞ , the bias increases, because you start using data that is very different to
𝑥 to estimate ̂𝑓(𝑥).
But variance decreases. Since the “function” is now very smooth (a line?)

Thus, special attention is needed to choose the right h, which minimizes the problems (bias
and variance).
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Kdensity, Bias vs Variance

Other Considerations

1. As shown above, one needs to choose the bandwidth ℎ carefully, balancing the bias-
variance trade off. Common approach is to simply use rule-of-thumb approaches to
select this parameter:

ℎ = 1.059𝜎𝑛−1/5ℎ = 1.3643 ∗ 𝑑 ∗ 𝑛−1/5 ∗ 𝑚𝑖𝑛(𝜎, 𝑖𝑞𝑟𝜎)

But other approaches may work better.

Other Considerations

2. A second consideration is the choice of Kernel function! (see help kdensity ->
kernel)
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• Although, except in few cases, the choice of bandwidth matters more than the kernel
function.

3. This method works well when your data is smooth and continuous. But not so much for
discrete data.

• Nevertheless, it is still possible to use it with discrete data, and kernel weights!

4. Can be “easily” extended to multiple dimensions 𝑓(𝑥, 𝑦, 𝑧, ...), including mixture of con-
tinuous and discrete data. You just multiple Kernels!

• But, beware of Curse of dimensionality.
• But still better than just Subsampling!

Kfunctions
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Non-parametric Regression

NP - Regression

• As hinted from the beginning, the idea of non-parametric regressions is related to estimate
a model that is as flexible as it can be.

• This relates to the CEF, where we want to estimate a conditional mean for every com-
bination of X’s. In other words, you aim to estimate models that are valid “locally”. A
very difficult task.

– You have a limited sample size
– You may not see all possible X’s combinations
– and for some, you may have micro-samples (n=1) Can you really do something with

this?

• Yes, make your model flexible, but not overly flexible! but how?

– Kernel regression ; Spline regression
– Polynomial regression; Smoothed Spline regression.
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Univariate case

• Consider a univariate case 𝑦, 𝑋 where you only have 1 indep variable, which are related
as follows:

𝑦 = 𝑚(𝑥) + 𝑒

which imposes the simplifying assumption that error is additive.

• In the parametric case, you could model this as a linear relationship:

𝑦 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3 + ... + 𝑒

(this is, in fact, starting to become less parametric)

• But in the full (unconstrained) model it would just be the conditional mean:

𝐸(𝑦|𝑋) = �̂�(𝑥) = ∑ 𝑦𝑖1(𝑥𝑖 = 𝑥)
∑ 1(𝑥𝑖 = 𝑥)

Problems? Impossible to do out of sample predictions, and if 𝑛 < 42 inference would be
extremely unreliable.

Local Constant Regression

We can improve over the Unconstrained mean using the following connection:

1. 1(𝑥𝑖 = 𝑥) is a non-smooth indicator that shows if an observation is in-sample .

2. We can substitute this with a smooth indicator function

𝐾𝑤(𝑥𝑖, 𝑥) = 𝐾 (𝑥𝑖−𝑥
ℎ )

𝐾(0)

Observations where 𝑥𝑖 = 𝑥 will have a weight of 1, but depending on ℎ, less weight is given
the farther 𝑥𝑖 is to 𝑥.
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This gives what is known as the Nadaraya-Watson or Local constant estimator:

�̂�(𝑥) = ∑ 𝑦𝑖𝐾𝑤(𝑥𝑖, 𝑥)
∑ 𝐾𝑤(𝑥𝑖, 𝑥) = ∑ 𝑦𝑖𝑤𝑖

Which, on its core, is simply a weighted regression, with weights given by 𝐾𝑤(𝑥𝑖,𝑥)
∑ 𝐾𝑤(𝑥𝑖,𝑥)

Kernel Regressions “borrows” info from neighboring observations to obtain a smooth estima-
tor.

Visuals
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Implementation

webuse motorcycle, clear
scatter accel time

(Motorcycle data from Fan & Gijbels (1996))

mata:
y = st_data(.,"accel")
x = st_data(.,"time")
yh = J(133,12,0)
for(k=1;k<=12;k=k++) {

for(i=1;i<=133;i++){
h = k/2
yh[i,k]=mean(y, normalden(x, x[i], h))

}
}

end
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getmata yh* = yh, replace
color_style viridis
two scatter accel time || line yh* time, xsize(7) ysize(5)

. mata:
------------------------------------------------- mata (type end to exit) -----
: y = st_data(.,"accel")

: x = st_data(.,"time")

: yh = J(133,12,0)

: for(k=1;k<=12;k=k++) {
> for(i=1;i<=133;i++){
> h = k/2
> yh[i,k]=mean(y, normalden(x, x[i], h))
> }
> }

: end
-------------------------------------------------------------------------------

.
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Considerations

1. Local Constant estimator is simple to estimate with a single variable. Multiple variables
is just as easy:

�̂�(𝑥, 𝑧) = ∑ 𝑦𝑖𝐾ℎ(𝑥𝑖, 𝑥) × 𝐾ℎ(𝑧𝑖, 𝑧)
∑ 𝐾ℎ(𝑥𝑖, 𝑥) × 𝐾ℎ(𝑧𝑖, 𝑧)

The problem, however, lies on the curse of dimensionality.

More dimensions, less data per (𝑥, 𝑧) point, unless you “increase” bandwidths.

2. As before, it all depends on the Bandwidth ℎ, which determines the “flexibility” of the
model.

3. The local constant tends to have considerable bias (specially near limits of the distribu-
tion, or when 𝑔 has too much curvature)
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Choosing h

The quality of the NPK regression depends strongly on the choice of ℎ. And as with density
estimation, the choice translates into a tradeoff between bias and variance of the estimation.

There are various approaches to choose ℎ. Some which depend strongly on the dimensionality
of the model.

For Example, Stata command lpoly estimates local constant models, using the following:

But that is not the only approach.

An alternative (used for regularization) is using Cross-Validaton. (a method to evaluate the
predictive power of a model)

Cross Validation: Intuition

1. Separate your data in two parts: Training and testing Sample.

2. Estimate your model in the TrainS, and evaluate predictive power in TestS.

3. To obtain a full view of predictive power, Repeat the process rotating the training set

𝑚𝑠𝑒 = 1
𝑁 ∑(𝑦𝑖 − 𝑔−𝑘(𝑥))2

This should give you a better idea of the predictive power of the model.
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Cross-validation in Stata

frause oaxaca, clear
ssc install cv_kfold

qui:reg lnwage educ exper tenure female age

cv_kfold
k-fold Cross validation
Number of Folds : 5
Number of Repetions : 1
Avg Root Mean SE : 0.45838
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qui:reg lnwage c.(educ exper tenure female age)
##c.(educ exper tenure female age)

cv_kfold
k-fold Cross validation
Number of Folds : 5
Number of Repetions : 1
Avg Root Mean SE : 0.42768

. qui:reg lnwage c.(educ exper tenure female age)
##c.(educ exper tenure female age)
##c.(educ exper tenure female age)

. cv_kfold
k-fold Cross validation
Number of Folds : 5
Number of Repetions : 1
Avg Root Mean SE : 0.43038

ssc install cv_regress
* Does lOOCV for regression
cv_regress

Leave-One-Out Cross-Validation Results
-----------------------------------------

Method | Value
-------------------------+---------------
Root Mean Squared Errors | 0.4244
Log Mean Squared Errors | -1.7144
Mean Absolute Errors | 0.2895
Pseudo-R2 | 0.36344
-----------------------------------------

LOOCV

Because the “choice” of “folds” and Repetitions, and the randomness, may produce different
results every-time, one also has the option of using the “leave-one-out” approach.

This means, leave one observation out, and use the rest to make the predictions.
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𝐶𝑉 (ℎ) = 𝑛−1
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑔−𝑖(𝑥𝑖))2

This is not as bad as it looks, since we can use the shortcut

𝐶𝑉 (ℎ) = 𝑛−1
𝑛

∑
𝑖=1

( 𝑦𝑖 − ̂𝑔(𝑥𝑖)
1 − 𝑤𝑖/Σ𝑤𝑗

)
2

In Stata, the command npregress kernel uses this type of cross-validation to determine
“optimal” ℎ

lpoly y x, kernel(gaussian) nodraw
display r(bwidth)
.23992564
npregress kernel y x, estimator(constant) noderiv
. Bandwidth
-------------------------

| Mean
-------------+-----------

x | .4064052
-------------------------

Extending from constant to Polynomial

An alternative way to understanding the simple NW (local constant) regressions, is to under-
stand it as a local regression model with anything but a constant:

�̂�(𝑥) = 𝑚𝑖𝑛 ∑(𝑦𝑖 − 𝛽0)2𝑤(𝑥, ℎ)𝑖

This means that you could extend the analogy and include “centered” polynomials to the
model.

𝑚𝑖𝑛 ∑(𝑦𝑖 − 𝛽0 − 𝛽1(𝑥𝑖 − 𝑥) − 𝛽2(𝑥𝑖 − 𝑥)2 − ... − 𝛽𝑘(𝑥𝑖 − 𝑥)𝑘)2𝑤(𝑥, ℎ)𝑖

�̂�(𝑥) = ̂𝛽0

This is called the local polynomial regression.

• Because its more flexible, it shows less bias when the true function shows a lot of variation.

• Because of added polynomials, it requires more information (larger ℎ)
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• It can be used to easily obtain local marginal effects.

• And can also be used with multinomial models (local planes)

𝑚𝑖𝑛 ∑(𝑦𝑖 − 𝛽0 − 𝛽1(𝑥𝑖 − 𝑥) − 𝛽2(𝑧𝑖 − 𝑧))2𝑤(𝑥, 𝑧, ℎ)

Local Constant to Local Polynomial

webuse motorcycle
two scatter accel time || ///
lpoly accel time , degree(0) n(100) || ///
lpoly accel time , degree(1) n(100) || ///
lpoly accel time , degree(2) n(100) || ///
lpoly accel time , degree(3) n(100) , ///
legend(order(2 "LConstant" 3 "Local Linear" ///
4 "Local Cubic" 5 "Local Quartic"))
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Statistical Inference

For Statistical Inference, since each regression is just a linear model, standard errors can be
obtained using the criteria as in Lecture 1. (Robust, Clustered, bootstrapped).

• With perhaps one caveat. Local estimation and standard errors may need to be estimated
“globally”, rather than locally.

The estimation of marginal effects becomes a bit more problematic.

• Local marginal effects are straightforward (when local linear or higher local polynomial
is used)

• Global marginal effects, can be obtained averaging all local marginal effects.

• However, asymptotic standard errors are difficult to obtain (consider the multiple corre-
lated components), but bootstrapping is still possible.

Stata Example

frause oaxaca
npregress kernel lnwage age exper

Computing mean function

Minimizing cross-validation function:
Iteration 6: Cross-validation criterion = -1.5912075

Computing optimal derivative bandwidth
Iteration 3: Cross-validation criterion = .00196371

Bandwidth
------------------------------------

| Mean Effect
-------------+----------------------

age | 2.843778 15.10978
exper | 3.113587 16.54335

------------------------------------

Local-linear regression Number of obs = 1,434
Kernel : epanechnikov E(Kernel obs) = 1,434
Bandwidth: cross-validation R-squared = 0.3099
------------------------------------------------------------------------------
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lnwage | Estimate
-------------+----------------------------------------------------------------
Mean |

lnwage | 3.339269
-------------+----------------------------------------------------------------
Effect |

age | .0169326
exper | -.0010196

------------------------------------------------------------------------------
Note: Effect estimates are averages of derivatives.
Note: You may compute standard errors using vce(bootstrap) or reps().

Other types of “non-parametric” models

We have explored the basic version of non-parametric modeling. But its not the only one.

There are at least two others that are easy to implement.

1. Nonparametric Series Regression (we will see this)
2. Smoothing series/splines: Which borrows from Series regression and Ridge Regression.

Non-parametric series

This approach assumes that model flexibility can achieve by using “basis” functions in combi-
nation with Interactions, but using “global” regressions (OLS)

But what are “basis” functions? They are a collection of terms that approximates smooth
functions arbitrarily well.

𝑦 = 𝑚(𝑥, 𝑧) + 𝑒
𝑚(𝑥, 𝑧) = 𝐵(𝑥) + 𝐵(𝑧) + 𝐵(𝑥) ∗ 𝐵(𝑧)

𝐵(𝑥) = (𝑥, 𝑥2, 𝑥3, ...)
𝐵(𝑥) = 𝑓𝑟𝑎𝑐𝑃𝑜𝑙𝑦
𝐵(𝑥) = (𝑥, 𝑚𝑎𝑥(0, 𝑥 − 𝑐1), 𝑚𝑎𝑥(0, 𝑥 − 𝑐2), ...
𝐵(𝑥) = (𝑥, 𝑥2, 𝑚𝑎𝑥(0, 𝑥 − 𝑐1)2, 𝑚𝑎𝑥(0, 𝑥 − 𝑐2)2, ...
𝐵(𝑥) = 𝐵 − 𝑠𝑝𝑙𝑖𝑛𝑒𝑠
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• Polynomials can be used, but there may be problems with high order polynomials.
(Runge’s phenomenon,multiple-co-linearity). They are “global” estimators.

• Fractional polynomials: More flexible than polynomials, without producing “waves” on
the predictions

• Natural Splines, are better at capturing smooth transitions (depending on degree). Re-
quire choosing Knots appropriately.

• B-splines are similar to N-splines, but with better stat properties. Also require choosing
knots

Except for correctly estimating the Bases functions (fracpoly and Bsplines are not straight
forward), estimation requires simple OLS.

NP series - tuning

• While NP-series are easy to estimate, we also need to address problems of over-fitting.

• With Polynomial: What degree of polynomial is correct? What about the degree of the
interactions?

• Fractional Polynomials: How many terms are needed, what would their “degrees” be.

• Nsplines, Bsplines: How to choose degree? and where to set the knots?

These questions are similar to the choosing ℎ in kernel regressions. However, model choice is
simple…Cross validation.

Estimate a model under different specifications (cut offs), and compare the out-of-
sample predictive power. (see Stata: cv_kfold or cv_regress)

One more problem left. Statistical Inference

NP series - SE and Mfx

Lecture 1 applies here. Once the model has been chosen, you can estimate SE using appropriate
methods. There is only one caveat

• Standard SE estimation ignores the uncertainty of choosing cut-offs or polynomial de-
grees. In principle, cut-offs uncertainty can be modeled. But requires non-linear estima-
tion.
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Marginal effects are somewhat easier for some basis. Just take derivatives:

𝑦 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + 𝑏3𝑚𝑎𝑥(0, 𝑥 − 𝑐)2 + 𝑒𝑑𝑦
𝑑𝑥 = 𝑏1 + 2𝑏2𝑥 + 2𝑏3(𝑥 − 𝑐)1(𝑥 > 𝑐)

• But keeping track of derivatives in a multivariate model is difficult, and often, the func-
tions are hard to track down. so how to implement it?

NP series: Implementation marginal effects

As always, it all depends on how are the models estimated.

• Stata command npregress series allows you to estimate this type of models using
polynomials, splines and B-splines. And also allows estimates marginal effects for you.
(can be slow)

• fp estimates fractional polynomials, but does not estimate marginal effects for you.

• In Stata, you can use the package f_able to estimate those marginal effects, however.
see here for details. and SSC for the latest update.

frause oaxaca, clear
drop agesq
f_spline age = age, nk(1) degree(3)
f_spline exper = exper, nk(1) degree(3)
qui:regress lnwage c.(age*)##c.(exper*)
f_able age? exper?, auto
margins, dydx(age exper) noestimcheck

------------------------------------------------------------------------------
| Delta-method
| dy/dx std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
age | .0360234 .0033909 10.62 0.000 .0293775 .0426694

exper | .0082594 .0050073 1.65 0.099 -.0015547 .0180735
------------------------------------------------------------------------------

Semiparametric Regressions

• Full non-parametric estimations are powerful to identify very flexible functional forms.
To avoid overfitting, however, one must choose tuning parameters appropriately (ℎ and
𝑐𝑢𝑡𝑜𝑓𝑓𝑠 ).
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• A disadvantage: Curse of dimensionality. More variables need more data to provide good
results. But, the more data you have, the more difficult to estimate (computing time).

• It also becomes extremly difficult to interpret. (too much flexibility)

• An alternative, Use the best of both worlds: Semiparametric regression

– Flexibility when needed with the structure of standard regressions, to avoid the
downfalls of fully nonparametric models

Partially Linear model

𝑦 = 𝑥𝛽 + 𝑔(𝑧) + 𝑒

This model assumes that only a smaller set of covariates need to be estimated non-
parametrically in the model.

Estimators:

• npregress series: Use Basis to estimate 𝑔(𝑧)
• Yatchew 1997: For a single z, sort variables by it, and estimate: Δ𝑦 = Δ𝑋𝛽+Δ𝑔(𝑧)+Δ𝑒.

This works because Δ𝑔(𝑧) → 0
Estimate 𝑔(𝑧) regressing 𝑦 − 𝑥 ̂𝛽 on 𝑧. See plreg

• Robinson 1988: Application of FWL. Estimate 𝑦 = 𝑔𝑦(𝑧) + 𝑒𝑦 and 𝑥 = 𝑔𝑥(𝑧) + 𝑒𝑥 and
estimate 𝛽 = (𝑒′

𝑥𝑒𝑥)−1𝑒′
𝑥𝑒𝑦 . For 𝑔(𝑧) same as before. See semipar.

• Other methods available see semi_stata

Generalized Additive model

𝑦 = 𝑔(𝑥) + 𝑔(𝑧) + 𝑒

This model assumes the effect of X and Z (or any other variables) are additive separable, and
may have a nonlinear effect on y.

• npregress series: with non-interaction option. Fractional polynomials mfp, cubic
splines mvrs (see mvrs) , or manual implementation.

• Kernel regression possible. (as in Robinson 1988), but requires an iterative method.
(back fitting algorithm)

– 𝑔(𝑥) = 𝑠𝑚𝑜𝑜𝑡ℎ(𝑦 −𝑔(𝑧)|𝑥), center 𝑔(𝑥) , and 𝑔(𝑧) = 𝑠𝑚𝑜𝑜𝑡ℎ(𝑦 −𝑔(𝑥)|𝑧), center 𝑔(𝑧)
until convergence

• In general, it can be easy to apply, but extra work required for marginal effects.
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Smooth Coefficient model

𝑦 = 𝑔0(𝑧) + 𝑔1(𝑧)𝑥 + 𝑒

This model assumes that 𝑋′𝑠 have a locally linear effect on 𝑦, but that effect varies across
values of 𝑧, in a non-parametric way.

• fp or manual implementation of basis functions, with interaction. May allow for multiple
variables in 𝑧

• One can also use Local Kernel regressions. locally weighted regression where All X
variables are considered fixed, or interacted with polynomials of Z. Choice of bandwidth
problematic, but doable (LOOCV).

vc_pack can estimate this models with a single z, as well as test it. Overall marginal
effects still difficult to obtain.

Example

frause oaxaca
vc_bw lnwage educ exper tenure female married divorced, vcoeff(age)
vc_reg lnwage educ exper tenure female married divorced, vcoeff(age) k(20)
ssc install addplot
vc_graph educ exper tenure female married divorced, rarea
addplot grph1:, legend(off) title(Education)
addplot grph2:, legend(off) title(Experience)
addplot grph3:, legend(off) title(Tenure)
addplot grph4:, legend(off) title(Female)
addplot grph5:, legend(off) title(Married)
addplot grph6:, legend(off) title(Divorced)

graph combine grph1 grph2 grph3 grph4 grph5 grph6
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Example

Figure 1: Wage Profile across years

The end: Next time Quantile regressions
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